
LISP AND SYMBOLIC COMPUTATION: An International Journal, ?, ??–??, 1993
c© 1993 Kluwer Academic Publishers – Manufactured in The Netherlands

Applications of Telos

PETER BROADBERY (pab@maths.bath.ac.uk)

CHRISTOPHER BURDORF (cb@maths.bath.ac.uk)

School of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom

Keywords: Eulisp, Telos, persistence, finalization

Abstract. EULISP has an integrated object system with reflective capabilities. We
discuss some example applications which use these facilities starting with relatively simple
extensions, such as the addition of new arithmetic classes, and moving to more advanced
meta-object programming to support finalization, virtual shared memory and persistence.
A secondary goal is to attempt to illustrate the additional possibilities of metaobject
programming over non-metalevel techniques.

1. Introduction

EULISP [21] provides an object system (called Telos [4]) which is fully inte-
grated with the rest of the language, and includes a meta-object protocol
(MOP) [17] which allows programs to reflect on the structure and inheri-
tance relationships between classes. Reflection here is the process of taking
a system object, such as a class and transforming it into a user-level object
which a program can read and perhaps modify. Using this structure a pro-
gram is free to change the representation and computation of these aspects
to obtain new behaviour by subclassing existing classes and metaclasses.
These new classes have the same status as the system-defined classes, so
the extensions become a part of the original language—no special code is
needed to use them.

This paper comes in four parts. First we introduce the Telos MOP from
a user’s point of view. This is followed by some simple examples of the use
of generic functions and methods to change part of a EULISP environment
transparently (section 3). The reader experienced in the use of this kind of
object-oriented language may wish to skip this section. After this we move
up a level to discuss the use of the slot creation protocol to add finalization
in a Telos based system (section 4.1), and how to implement a virtual shared
memory model (section 4.2). The last part differs from the earlier ones in
that instead of being illustrative fragments of meta-object programming,
it describes a complete application written using EULISP and Telos which
depends heavily on Telos in order to create a transparent interface into an



2 BROADBERY AND BURDORF

object store for simulation programs. A secondary aspect of this last part
is that the system in question was originally written in CLOS and had first
to be ported to EULISP before the extensions described here were made.

2. Meta-object protocols and Telos

A detailed description and rationale for the design of Telos appears in [4].
Two principles of the design are: (i) a program should not pay for the cost of
a feature that it does not use (also known as “don’t use, don’t lose”), (ii) as
large a proportion as possible of the meta-object level operations should be
done when classes are created rather then when they are used—in effect, a
form of compile-time versus run-time tradeoff. A consequence of this second
property is that the creation and access routines can be extended without
imposing overheads on other programs and with minimal overheads on the
client program.

There are four components to the Telos MOP:

• Class definition and inheritance;

• Slot accessor creation and invocation;

• Generic function dispatch;

• Object allocation and initialization.

Each of these consists of a number of generic functions which have defined
semantics, and are guaranteed to be called at specific points in the protocol.
Of course, these protocols are not entirely separate—each relies on the
existence of the other three to function, but the actual details of each
protocol are largely independent of one another. New behaviour is obtained
by subclassing the classes specified in the definition, and specialising the
appropriate parts of the MOP for the new classes.

3. Extending EuLisp arithmetic

In common with many other languages (for example, C++ [25]), EULISP

provides the ability to define new types of number, and allows the program-
mer to add new methods on the standard numeric operators.

Any extensions to the number system should take into account the con-
cerns of transparency, efficiency and locality. The first implies that new
numeric types should be consistent with the existing classes (integer and
float), so that existing generic operations, such as + are well-defined, as
well as of polymorphic operators, such as double. It is unacceptable to



APPLICATIONS OF TELOS 3

(defmethod binary+ ((x <number>) (y <number>))
(let ((class (or (lift x (class-of x))

(lift y (class-of y))
(error "Can’t lift numbers"

<arithmetic-condition>
’error-value (cons x y)))))

(binary+ (convert x class)
(convert y class))))

Figure 1: Number lifting in Feel

be forced to rename operations, or to rule out operations which rely only
on the semantics of the standard operations (i.e., not on the properties
of the individual numeric types). The second concern is that new classes
should run as efficiently as the standard classes—overhead for calling the
operations should be no more than for calling generic functions. Finally,
the use of new arithmetic types should not prohibit standard optimisations
on the normal types, and should not affect the semantics of existing code.
The first of these can, in general, only be solved with a compiler [18], while
the second implies that new numeric methods should not be excessively
general. That is to say, methods should not be defined on binary functions
which do not specialize both arguments, so that the new method does not
affect the applicable-method list of other calling domains.

3.1. Numeric conversion

When a binary operation is called with arguments of different types, and
no special-purpose method has been defined, standard method dispatch
rules imply that the method on <number>×<number> is called (assuming
that all methods are specialized by both arguments having the same class).
In the Bath implementation of EULISP, Feel [23], the most general method
attempts to lift both numbers so that one of the other methods can cope
with the operation. A function called lift is defined for numbers, and
works in a similar way to the standard function convert, but returns a
class as its result, or nil if the operand is of a more general type. See
figure 1.

3.2. Modular Arithmetic

This example (see figure 2) shows how classes can be instantiated at
runtime in order to allow types to be created “on the fly”. When a new
mod n number is created, and no mod n number has been created before,



4 BROADBERY AND BURDORF

(defmodule zmodn
(import (eulisp-level-0) syntax (eulisp-level-0))

;;Metaclass (somewhere to hold values of n)
(defclass <zmodn-class> (class)

((n initarg n reader zmodn-n))
class <class>)

(defclass <zmodn-object> (number)
((z initarg z accessor zmodn-z))
class <zmodn-class>)

;;Constructing new zmodn class
(defun make-zmodn-class (n)

(make <zmodn-class> ’n n
’direct-superclasses (list <zmodn-object>)
’name (make-symbol (format nil "zmod-~a" n))))

(defun find-zmodn-class (n)
;;implements the memoization of class creation
...)

;;i mod n
(defun make-modular-number (i n)

(make (find-zmodn-class n) ’z i))

;;NB: Not efficient, but means that remainder
;;only appears once in this module.
(defmethod initialize ((proto <zmodn-object>) lst)

(let ((z (call-next-method)))
((setter zmodn-z) z
(remainder (find-key ’z lst) (zmodn-n (class-of z))))
z))

;;example method
(defmethod binary+ ((i <zmodn-object>) (j <zmodn-object>))

(if (eq (class-of i) (class-of j))
(make (class-of i) ’z (+ (zmodn-z i) (zmodn-z j)))

(error "incompatible moduli" zmodn-error)))

...
)

Figure 2: modular numbers in EuLisp



APPLICATIONS OF TELOS 5

(defmethod (lifter <uni-poly>) ((x <integer>))
<uni-poly>)

(defmethod (converter <uni-poly>) ((x <integer>))
(make <uni-poly> ’coeff x ’degree 0))

Figure 3: Lift methods for polynomials

a new class is instantiated, so that it is easy to check the compatibility of
objects. This implementation reduces the space required for instances by
storing the value of n in the class.

3.3. Polynomial Arithmetic

A univariate polynomial class is relatively simple to write, but in addi-
tion to the arithmetic involving only polynomials it is also meaningful to
consider mixed mode arithmetic on integers and polynomials. We therefore
need to define a liftmethod for integers to polynomials, and a correspond-
ing convert method (see figure 3). The lift method ensures that we do not
need to define a method for each combination of arithmetic class.

The <number>×<number> method of figure 1 is not very efficient. How-
ever, it can be optimized as follows: whenever a arithmetic operation is
called with a new signature, and the <number>×<number>method is there-
fore called, carry out the target class lookup as in figure 1, but this method
should also create a new method on the generic function which itself does
the appropriate conversion. This avoids the lookup of the target class each
time the function is called with a particular signature. Clearly this trades
time for space, where the latter will depend on the number of subclasses of
number in the system.

A problem with this approach is that it does not automatically convert
through intermediate types; for instance, if we added a multivariate poly-
nomial class, we would need to define lift methods for both integers and
standard polynomials, even though one can convert from integers to multi-
variate polynomials via univariate polynomials. Additional protocol would
need to be added to the lifting functions so that possible routes could be
searched if this functionality was desired.

4. Redefining slot access

The Telos slot creation and access protocol [4] differs from the CLOS [17]
protocol in a number of important ways, but primarily, the balance of work



6 BROADBERY AND BURDORF

compute-inherited-slot-descriptions
compute-slot-descriptions
compute-and-ensure-slot-accessors

ensure-slot-reader
compute-primitive-reader-using-class

compute-primitive-reader-using-slot-description
ensure-slot-writer
compute-primitive-writer-using-class

compute-primitive-writer-using-slot-description

Figure 4: slot access protocol

is shifted from the access protocol to the creation protocol.

The slot accessor creation routine has four phases (figure 4):

• Create slot-description objects;

• Finalize the details of the object representation;

• Create the slot accessor functions;

• Create specialized slot accessors.

Each phase allows the programmer to specialize the slot in different ways:
add extra slots to the class in the first and move slots and allocate space
for hidden slots in the second. However, the last two are probably the most
commonly used: one can change the function used to dispatch slot access
in the third phase, whilst the last enables arbitrary functions to be called
at slot access time.

Where the slot description is an instance of <local-slot-description>
(the default case), accessing a slot is just an indexed reference or update
operation. However, this can be specialized at will. The flexibility of this
approach can be used to build complex systems from the primitive functions
provided by EULISP.

4.1. Finalization

In many applications it is required to do some post-processing when it
can be established that an object will no longer be needed. This process is
known as finalization [16]. For example, many systems require that close
should be called on a file object before a program is exited, otherwise the
stored version of the file may be inconsistent with the version held in a
buffer by the operating system or application program. The problem is that



APPLICATIONS OF TELOS 7

(defclass <file> ()
;;create a class with a slot to be used in the finalization method
((file initarg file

accessor file-internal
slot-class <finalizable-sd>))

class <finalizable-class>
initargs (open-args)
constructor (open-safe-file open-args))

;;open a file and set the actual handle
(defmethod initialize ((x <file>) lst)

(let ((new (call-next-method)))
((setter file-internal) new
(apply open (find-key ’open-args lst)))

new))

;;tidy up the file
(defmethod finalize ((x <file>))

(close (file-internal x)))

;;various methods to allow writing to this
;;class of object, plus print methods, ...
...

Figure 5: Finalization of a file handle

a program may lose a pointer to such an object, and never be able to run the
finalization code on it before the object is recycled by garbage collection,
after which finalization is impossible. To circumvent this situation, we need
to be able to to note when an object becomes inaccessible, recover its slots
from some “hidden” storage and invoke a tidying operation on the object.

The Bath implementation of EULISP provides two extensions to the lan-
guage that simplified the implementation: the system allows the user to
install a function which is called directly after each garbage collection (a
post-GC hook) and secondly a new class of object—weak wrappers. It is
guaranteed that the post garbage collection function is never called during
the execution of a previous finalize, and always runs on the thread which in-
voked the garbage collection process. The purpose of these rules is to avoid
problems with infinite loops and concurrency, respectively. Weak wrappers
are objects with a single slot which initially contains some object, but is
set to nil if the object is garbage collected (during a garbage collection,
references from weak pointers are not followed, therefore the referenced ob-



8 BROADBERY AND BURDORF

(defclass <finalisable-class> (class)
((count accessor finalisable-slot-count)
(proxy accessor proxy-class))
initargs (proxy)
)

;;class initialization
(defmethod initialize ((cl <finalisable-class>) lst)

(let ((cl (call-next-method)))
(let ((slot-posn (class-instance-size cl)))
((setter class-instance-size) cl (+ slot-posn 1))
((setter finalisable-handle-posn) cl slot-posn)
...)

cl))

;;instance allocation
(defmethod allocate ((cl <finalisable-class>) lst)

(let ((handle (make-vector (finalisable-slot-count cl)))
(obj (call-next-method)))
((setter primitive-slot-ref) cl
(finalisable-handle-posn cl)
handle)
obj))

;;Constructing new proxy objects
(defun make-proxy-object (class values)

(let ((new-cl (proxy-class class)))
(let ((obj (allocate new-cl ’proxy t)))
(mapc (lambda (sd)

((slot-description-slot-writer
(find-slot-description new-cl
(slot-description-name sd)))

obj
(vector-ref values

(slot-description-position sd))))
(class-slot-descriptions class))

obj)))

Figure 6: Fragment of finalisation code

ject may be garbage collected). These two extensions1, and the facilities of
Telos allow the implementation of a simple finalization scheme.

The idea is to store the slot values of an object that are needed for final-

1One does not absolutely need the post GC callback as one could use the wait prim-
itive, but the GC callback is more efficient.



APPLICATIONS OF TELOS 9

ization somewhere safe, so that when the space occupied by the object is
recovered by garbage collection, the values that were stored in the slots are
still available. Under the protocol for this implementation of finalization,
each class which needs this facility is required to nominate a proxy-class
with similarly named slots for the values needed for the finalization method.
The proxy class defaults to the class itself. When the original instance is
garbage collected, the change of status can be detected in the weak wrap-
per and the slot values can be recovered. The finalization method is then
executed on an instance of the proxy-class, with the instance not subject to
the finalization scheme. The slot values are stored as a vector, on which the
original object maintains a handle, and is also reachable via an association-
list indexed by a weak pointer referencing the object to be finalized.

When an object becomes unreachable, the post-GC function instanti-
ates the proxy-class with the remembered slot values and calls the finaliza-
tion routine with the ‘resurrected’ object. If the proxy class is (by coinci-
dence) subject to the finalization scheme, then an argument is passed to
the allocate method to ensure that the resurrected object is not added to
the finalization list. See figure 6.

This technique works well, but cannot finalize a cyclic structure as the
values of the slots are accessible via non-weak pointers. It should be noted
that it is hard to define an algorithm for finalizing circular structures which
picks the ‘correct’ point in the cycle to break—more likely, this indicates
that the structure of the objects needs to be re-thought, although an extra
level of indirection can generally be used to achieve a similar effect! To
handle cyclic structures properly, more information must be given to the
processor about how the objects interact. Networks without cycles take n

cycles to be completely finalized, where n is the diameter of the network.
To do better than this the garbage collector would have to be modified to
make another pass over the weak pointers after the finalization phase is
complete, which could seriously affect the performance of the system when
no finalization is required. Including such extra routines would complicate
the garbage collection sufficiently that stock algorithms would not be able to
handle it, whereas it was desired to make the system reasonably portable—
every implementation of Telos so far has been on a system with some kind of
weak pointer (generally provided as an extension). The other advantage of
this approach is its relative simplicity—the code itself is quite short (< 150
lines), and quite readily comprehensible.

4.2. Virtual Shared Memory

Virtual Shared Memory is a software technique for simulating the shared
memory of many parallel architectures on a network of processors with local



10 BROADBERY AND BURDORF

memory only. It can be viewed as an abstraction for passing data between
multiple physically disjoint processes, without message passing. It involves
inventing a virtual ‘arena’ in which objects are stored, and some interface
to deal with an object’s allocation and slot access. The idea is to add a
mechanism whereby objects can be passed between processes without the
expense of copying the objects at each communication. Such a system is
useful for a variety of reasons:

distributed data structures: The processors can co-operate to form a
large data structure which is accessible equally from all processors;

hides message passing: Client programs do not need to know that other
processes will be asking for data in their space—so message handling
code does not need to be written explicitly;

more familiar programming model: The concept of a number of ob-
jects interacting via shared memory is more familiar to the program-
mer than disjoint memory spaces.

On the other hand, such a system does have its drawbacks—the relative
sloth of a network is hidden by the abstraction, so it is easy to write slow
code suffering from the delusion of uniform access cost. Consistency models
may add even more inefficiency to this protocol.

The abstraction of VSM should be capable of expansion in several ways:

memory consistency: For some applications updates to objects never
happen (for example if the program is totally functional), or, at the
other extreme, updates must be atomic and no object must copied
without an invalidation protocol. Both should be accommodated.

garbage collection: It should be possible to write a garbage collector on
top of the abstraction so that deallocation is handled by the system,
rather than by some ad-hoc method.

object naming: One should be able to retrieve objects by indirect mech-
anisms. This allows Linda-like functionality.

efficiency: The default mechanism should not have an excessive overhead
for the most common cases. For example, multiple reads of the same
slot, and additional classes can override parts of the protocol so that
they may be yet more efficient.

The current version of VSM consists of a number of classes of object which
interact with Telos to provide a simple virtual memory system and support
for protocols such the system could be extended to support more of the
other mechanisms listed.



APPLICATIONS OF TELOS 11

4.2.1. Layout of memory

The allocation of memory closely mirrors that of the underlying Lisp
system—objects are allocated from pages (a fixed-size group of slots or
objects) which are in turn allocated by a distributed allocator which tracks
memory usage to ensure that it does not swamp the rest of the system.
The pages store either atomic data, such as instances of strings, symbols
and numbers, or addresses of instances of other objects stored in the VSM
system.

4.2.2. Implementation

The classes used in the implementation are designed to be subclassed,
and provide an extension to Telos to encompass allocation strategy, garbage
collection, and distribution of data. The implementation is made up of four
classes of object:

page: Actually holds the information. These are sent atomically through
the distribution layer.

address: Contains a page pointer and an offset. Used to reference objects.

handle: The part of an object used to store its address.

object: Seen by users of the VSM code.

The VSM system consists of a protocol which new page and address
classes can specialize, plus a number of implementations of these abstract
classes. Normal (application) code does not need to be aware of this proto-
col, although one can access it if new classes are added. One change from
standard semantics is that objects may not appear to be eq to themselves
because of caching arrangements (a page may leave the local processor and
return). The function eql, which has an appropriate method to compare
VSM addresses must be used instead.

Pages are held in caches on local processors with a reference to the page’s
owning processor, and when a page fault occurs the system then queries
the page’s owner about its location. Once found, the page is copied to the
processor.

Other page lookup mechanisms are perfectly possible—a message can
be sent to the owner of the page on every request, and the owner replies
with the appropriate object. Other mechanisms can be supported by the
protocol and work is in progress exploring the advantages of some of these.

Without a means of starting remote threads, VSM is not especially useful.
Currently the system uses a version of futures [15], although a paralation [2]
[24] implementation has also been developed. The underlying interprocess



12 BROADBERY AND BURDORF

communications mechanism is PVM [13], although this is transparent to
the rest of the system.

The system is strictly experimental and has been designed to permit
experiments to be made on the efficiency and interaction of various con-
sistency protocols, page caching and replacement algorithms, and garbage
collection. A persistent storage module will also be added so that one can
employ both temporal and spatial persistency in a system.

5. Persistence

Persistence has also been explored as a topic in its own right as a means
to support large-scale object-oriented simulation in EULISP. This section
discusses that experience.

Persistent object systems (POS) [1] provide a seamless integration be-
tween a programming language and a database. The POS requires a cache
to hold objects which have been loaded into primary memory to avoid the
need for reloading an object each time it is accessed. The persistent ob-
ject cache can be viewed as similar to the working set in a virtual memory
system. The size of the cache has to be limited so as not to swamp the
runtime system with more objects than can exist without exceeding the
size of swap space. Also, since objects may be shared with other users, it
is not desirable for any one user to have control over too many objects at
a given time, and therefore, caches can also be useful to limit the number
of objects owned by a user.

Some of the advantages of persistent systems listed by Morrison and
Atkinson [20] include:

1. reduced complexity;

2. reduced code size and time to execute;

3. data outlives the program.

Firstly, complexity is reduced for the application builders, because with
persistent systems, there is no distraction for the programmer in dealing
with the complexity of managing the database. He or she need only con-
sider the complexities involved in the mapping between the programming
language and the problem to be solved. Secondly, persistent systems reduce
code size, because the application program need not contain code concerned
with the explicit movement of data between primary and secondary mem-
ory. Also, the time to execute is reduced, because only objects required by
the system get loaded into primary memory. Finally, the data outlives the
program, because it resides in a database.



APPLICATIONS OF TELOS 13

In this section we discuss the implementation of a such a persistent object
system designed for use in simulation applications—The Persistent Simu-
lation Environment (PSE) developed at UC Berkeley, and the problems in
porting it from its original language, Allegro Common Lisp, to EULISP.

5.1. Persistence in PSE

Persistent object systems support four major functions: sharing, main-
taining, inspecting, and reusing of objects. Sharing allows the concurrent
use of persistent objects by more than one application program, similar to a
database management system which supports access by multiple programs.
Object maintenance (insertion, deletion, and updating of simulation ob-
jects) can be performed in virtual memory during simulation processing, or
through maintenance routines applied directly to objects in the persistent
object repository, external to any simulation program. Objects modified
during simulation processing will be transparently updated in the persis-
tent repository so that consistency is maintained between virtual objects
in the simulation and secondary storage persistent objects. Likewise, ob-
jects can be retrieved and inspected during simulation processing and at
any time before or after the simulation. Finally, with a persistent object
repository, simulation objects can be reused without recreating and initial-
izing objects for each simulation trial. For simulations with thousands of
objects, reusability contributes significantly to performance improvement.
PSE supports three of the four functions described above; sharing of per-
sistent objects has not been addressed because it involves issues of transac-
tion management and is not one of our primary goals. Nevertheless, other
persistent object languages are pursuing this topic and their results will
contribute to the success of persistent object systems.

5.2. PSE architecture

An object which is declared to be a persistent object is retained in sec-
ondary storage after program execution terminates. In PSE, once a class
has been declared to be persistent, those persistent objects are referenced
identically to non-persistent simulation objects. Furthermore, fetching and
instantiating a persistent object from secondary storage is performed trans-
parently by the underlying PSE kernel. We based the kernel implementa-
tion of PSE on the Rowe’s SOH (shared object hierarchy) methodology.

PSE is composed of the following components pictured in figure 7: per-
sistent object files, object space, and an object directory. The object files
store an ASCII representation of the objects in secondary storage. Object
space denotes the area in main memory where the object structures re-
side, and the object directory contains one handle per object which maps



14 BROADBERY AND BURDORF

Figure 7: Components of PSE

an object identifier into the object handle. The object handle contains
meta-information about the object and always remains in main memory.
A handle includes information such as a pointer to the object’s memory
location (which is nil if the object is not in the object space), the object’s
location in the object file, whether or not the object has been modified, and
the object’s update mode. The update mode indicates how the object will
be modified on disk. If the mode is direct-update the object will be updated
immediately upon modification. If it is deferred-update, the object will be
updated when the number of objects in the object space reaches capacity
thereby triggering garbage collection of the object directory and updating
of necessary objects. Local-copy objects only exist in main memory and
therefore are not updated on disk.

During program execution, object handles are used as parameters to
represent simulation objects. When a slot in an object is referenced, one
of two actions is taken: if it is determined that the object is not in main
memory, then it is fetched and instantiated before the slot value is returned.
Alternatively, if the object is already in main memory, the value of the slot
is simply returned. As discussed earlier, the determination of the object’s
location, fetching, and instantiation are handled by the persistent object
system and is transparent to the programmer.



APPLICATIONS OF TELOS 15

5.3. Port of PSE to EuLisp

PSE was ported to EULISP, because of the availability of threads and the
means for true concurrent execution on a Stardent Titan multiprocessor.
Concurrency provides the possibility of reducing the real execution time
of a program through simultaneous execution of different code segments.
The port of PSE to EULISP required a significant amount of time, because
the entire interface with the object system had to be rewritten and EULISP

modules provide a more austere environment than Common Lisp’s pack-
ages. In the Common Lisp version of PSE, the object system had been
merged with the file system through low-level modifications. A new meta-
class was created for persistent classes and objects and methods were added
at the low-level to handle access and modification of these objects.

The primary problem involved in porting PSE to EULISP is the lack of
runtime binding and exportation of names. In Common Lisp this is entirely
possible, while EULISP prefers to gain run-time efficiency by eliminating
these development-time programming aids. Feel, the Bath implementation
of EULISP, partially supports runtime binding, but because of the semantics
of module importation, cannot handle exporting new names at runtime.
This is a problem because classes stored in the persistent database also
include some code for the class’s methods. Several techniques were tried,
and it was finally decided to use a single module to hold the application,
and explicitly mark the classes that are intended to be persistent, and
predefine their accessors. This forces a distinction between persistent, and
non-persistent classes which was not present in the Common Lisp version.
Such a distinction makes the POS more visible to the programmer, whereas
the programmer should not be aware of the persistency of objects.

On a more positive note, EULISP slot descriptions provided an elegant
solution to the problem of access and modification of persistent slots. A
macro called defdbclass was defined which created a new class with all slot-
descriptions of class persistent-slot-class. Then, a slot access method was
defined on persistent-slot-class to handle the specific mechanics of access
and modification of a persistent slot as described previously.

The remaining elements of the port was spent dealing with technical
differences between EULISP and Common Lisp of which there are many but
are not of great interest, so they will not be discussed further.

5.4. Persistence built into higher-level constructs

One of the advantages of Lisp is that it can be used as an assembly
language to build higher-level constructs using macros that are tailored
for specific domains such as rule-based systems, natural language process-



16 BROADBERY AND BURDORF

ing, and even simulation. It has been found to be advantageous to incor-
porate the previously described persistent-object facility into higher-level
constructs for Petri net and connectionist simulations, because in the case
of Petri nets, they can store the simulation history for later reference, and
in the case of connectionism, they can store information, gained through
the building and training of the network, for reuse.

5.4.1. Connectionism

Connectionist models provide a mechanism for representing knowledge
through connections between neurons. Those connections are weighted to
represent the certainty factors between semantic relationships. Due to the
recent increase in interest in the use of connectionist and neural systems,
there has been active development in tools that support their development
[9, 12, 11, 26].

POCONS [8] [7] (Persistent Object CONnectionist Simulator) is a new
component added to the EULISP version of PSE which supports object-
oriented connectionist simulation. With the exception of Neula [12] other
neural network tools do not support an object-oriented design methodology.
Both Neula and NSL [27] have object-oriented constructs, but differ in their
syntax and semantics which is unlike the widely-used object-oriented lan-
guages like Smalltalk [14], C++ [25], or CLOS [3]. In addition, POCONS
is close to CLOS and Telos in syntax and semantics (thus, there should be
a shortened learning curve for programmers familiar with either systems)
POCONS can be used to develop hybrid symbolic/connectionist systems,
since it is embedded in Lisp which has been used extensively for symbolic
inference. It is also extensible, because it allows a user to create new neu-
rons interactively and rebuild the neural network: a feature not available
in the other object-oriented connectionist simulators like Neula and NSL.
Also, unlike Neula and NSL, POCONS supports persistence, and it uses
objects to represent relationships between different elements of the network.

POCONS is a declarative language in that the programmer simply spec-
ifies the structure of the network, enters a command to make the system
build the network’s internal structure, and initiates execution of a simula-
tion.

5.4.2. Object-Oriented Connectionist Model

POCONS is based on the object-oriented connectionist model where the
user does not specify any procedural information about the network’s ex-
ecution. The model only requires that the user specify the neurons which
represent the components of the network, their attributes, and relation-
ships between them. POCONS can then be instructed to generate a neural
network. Queries can be made on the network which initiate connectionist



APPLICATIONS OF TELOS 17

(defdbneuron hobbit (middle-earth-inhabitant)
((nature initform ’good)
(height initform ’short)
(is-fond-of initform ’((birthday-parties . 1.0)

(swimming . -0.7)
(fighting . -1.0)))

(has-enemy initform ’((dragon . -1.0)))))

(defdbneuron bilbo (hobbit)
((is-fond-of initform ’((pipeweed . 1.0) (light . 1.0)))))

(defdbneuron dragon (middle-earth-inhabitant)
((has-enemy initform ’dwarf)
(nature initform ’evil)))

(defdbopposites ’nature ’good ’evil)

Figure 8: Fragment of POCONS code for a Middle Earth neural net

simulations.

The underlying POCONS system translates connectionist objects into
sets of neurons that represent the class hierarchy and attributes. Each
class has a neuron associated with it, and likewise the class neuron has
weighted is-a links to the neuron which represents its superclass. Also, a
neuron is created for each class and slot-value pair (e.g., (nature, good))
which has links to its class and the class has links to it.

Defdbneuron is the defining component for the creation of a persistent
neuron and an example is given in figure 8.

The neuron-name will be used as a symbol that identifies the neuron. The
superclasses specify the class or classes from which the neuron inherits. The
slots describe the explicit relationships that the neuron will have. Slots are
specified as an initialisation list containing slot-names and slot options.

Defdbopposites indicates a relationship between two neuron types and is
defined as follows:

(defdbopposites slot-name neuron-name neuron-name)

Defdbopposites can only take as arguments neuron-names used in calls to
defdbneuron. The result of the use of defdbopposite will be a negative link
between the two specified neurons in the network. Also, the use of defdbop-
posites generates a persistent object containing the specified information.
Thus to reuse a specific network after the first time it was executed, one



18 BROADBERY AND BURDORF

need only open the database.

The algorithm which converts this representation examines each object
and a neuron is created for each neuron name and for each slot attribute
and value. It then creates forward links from each subclass neuron to each
superclass neuron. Links are also created from class neurons to their slot
neurons.

For a more extensive description of POCONS including some examples
see [8], and for experiments in mapping POCONS onto SIMD and MIMD
machines see [7].

5.5. Petri nets

Petri nets are widely used in the simulation of concurrent systems [22].
As a result of the popularity of Petri nets, there have been a variety of tools
developed [10]. These tools include graphical editing and creation of Petri
net systems. This section describes a tool for the development of Petri nets:
a language called Per-trans [6]. It features the fusion of persistent object
technology with Petri net development. Per-trans is a component added to
the EULISP version of PSE.

Per-trans has features that simplify the task of developing stochastic
Petri net models [19]. It contains constructs that specify the places, transi-
tions, and token locations in the Petri net. The underlying system handles
all the procedural execution of the simulation. Per-trans allows Petri net
components to be represented as persistent objects.

5.5.1. Per-trans components

Per-trans provides an application programmer with primitives to repre-
sent and execute simulations using the stochastic Petri net model. Per-trans
has the following general features:

1. Persistence;

2. Declarative;

3. Allows embedded Lisp code.

It supports persistence, because all the various elements of the Petri net
model (places, transitions, and tokens) can be represented as persistent
objects. The application programmer can decide whether he or she wants
some or all of the net to be persistent. It is declarative in that the program-
mer need not specify any of the control information used to determine when
a transition will fire and send tokens throughout the net. The Per-trans
defining forms generate an event-based simulation that is executed by the



APPLICATIONS OF TELOS 19

underlying scheduler and simulator. The programmer need only specify
the places and transitions, where they are connected, and any time delays
that might exist on transitions. The internal scheduler examines places and
transitions to determine whether a transition is enabled and when it should
fire. It also passes tokens to places that are enabled once a transition fires.
The underlying scheduler sends messages to objects that contain a time
stamp for when they should execute. The underlying simulator then exe-
cutes those messages at the appropriate simulation time. Finally, Per-trans
allows the application programmer to embed Lisp code in the definition of
specific nodes (places and transitions). The embedded code will be exe-
cuted when a token moves to the node’s location in the network. Such
embedded code can be used to process information or produce graphical
output illustrating the net’s behaviour. Graphical output can be produced
in the X Window System as supported under Feel [23].

Several Petri net models have been implemented using Per-trans. Per-
trans has also been modified so that it produces parallel simulations [5].
The Per-trans language is explained in detail with examples in [6].

6. Conclusions and Further Work

We have discussed the applications of the Telos object system to various
programming problems, and shown how it can be used to construct appli-
cations. The use of an object-oriented language encourages a toolbox of
useful routines to be written which can then be combined to form a com-
plete application. The addition of the metaobject protocol allows this idea
to extend into the representations of classes as well as the interface they
provide.

One of the strengths of Telos is that it is integrated into its host language,
EULISP—to a greater degree than CLOS—and can be used to change parts
of the system which are commonly not part of the object system, for in-
stance arithmetic operations and threads. This power, in combination with
EULISP’s module system assists with both language extension and language
embedding. However, experience with supporting persistence suggests it
makes dynamic demands that are hard to reconcile with (uncharacteristi-
cally) static tendencies of this Lisp, which have been motivated by a desire
to be able to deliver more efficient applications. Clearly this is an area for
further work.

References

1. Atkinson, M. and Morrison, R. Persistent System Architectures. In



20 BROADBERY AND BURDORF

Proceedings of the Third Annual Conference on Persistent Object Sys-
tems, Springer-Verlag (1989).

2. Batey, D.J. DPL - A Distributed Implementation of Paralation Lisp.
Bath Mathematics and Computer Science Technical Report, 92-60
(June 1992).

3. Bobrow, D. et al. Common Lisp Object System Specification. (1988).
X3J13 Document 88-002R.

4. Bretthauer, H., Davis, H., Kopp, J., and Playford, K. Balancing the
EULISP Metaobject Prototcol. In Reflection and Metalevel Architec-
ture, Proc. of the International Workshop on New Models for Software
architecture (November 1992) 113–118.

5. Burdorf, C. Parallel Simulation of Stochastic and Colored Petri Nets.
Submitted for Publication.

6. Burdorf, C. Per-Trans: A Persistent Stochastic Petri Net Representa-
tion Language. In Proceedings of the 22nd Annual Pittsburgh Confer-
ence on Modeling and Simulation (1991).

7. Burdorf, C. Compiling Connectionist Simulations for SIMD and MIMD
Architectures. In Proceedings of the 1992 European Simulation Multi-
conference, Society for Computer Simulation (1992).

8. Burdorf, C. POCONS: A Persistent Object-based Connectionist Sim-
ulator. In Proceedings of the 1992 SCS Western Multiconference:
Object-Oriented Simulation, Society for Computer Simulation (1992).

9. D’Autrechy, C., Reggia, J. A., Sutton, G. G., and Goodall, S.M. A
General-Purpose Simulation Environment for Developing Connection-
ist Models. Simulation (1988).

10. Feldbrugge, F. Petri Net Tool Overview 1989. In Lecture Notes in
Computer Science: Advances in Petri Nets 1989 (1989).

11. Feldman, J. A., Fanty, M. A., and Goddard, N. H. Computing with
Structured Neural Networks. IEEE Computer (1988).

12. Floreen, P., Myllymaki, P., Orponen, P., and Tirri, H. Compiling Ob-
ject Declarations into Connectionist Networks. AICOM (1990).

13. Geist, G. and Sunderam, V. Network Based Concurrent Computing on
the PVM System. Oak Ridge National Laboratory (1991).



APPLICATIONS OF TELOS 21

14. Goldberg, A. and Robson, D. Smalltalk-80: The Language and its
implementation. Addison-Wesley, Reading, Massachusetts (1983).

15. Halstead, Robert H. Multilisp: A Language for Concurrent Symbolic
Computation. ACM Transactions on Programming Languages and
Systems, 7, 4 (October 1985).

16. Hayes, B. Finalization in the collector interface. In International Work-
shop on Memory Management 92, Springer-Verlag (September 1992)
277–298.

17. Kiczales, G., des Rivieres, J., and Bobrow, D. The Art of the Metaob-
ject Protocol. MIT Press, Cambridge, Massachusetts (1991).

18. Kind, A. and Freidrich, H. A practical approach to type inference for
eulisp. Published in this Journal.

19. Marsan, M. Stochastic Petri Nets: An Elementary Introduction. In
Lecture Notes in Computer Science: Advances in Petri Nets 1989
(1989).

20. Morrison, R. and Atkinson, M. P. Persistent Languages and Architec-
tures. In International Workshop on Computer Architectures to Sup-
port Security and Persistence of Information, Springer-Verlag (1990).

21. Padget, J.A. and Nuyens, G. (Eds.). The EULISP Definition. (1993).
in preparation.

22. Peterson, J. L. Petri Net Theory and the Modeling of Systems.
Prentice-Hall, Englewood Cliffs, N.J. (1981).

23. Playford, K. J. and Broadbery, P. A. Feel: An Implementation of Eu-
Lisp. Concurrent Processing Research Group, School of Mathematical
Sciences, University of Bath (June 1991). May be obtained by anony-
mous ftp from ftp.bath.ac.uk.

24. Sabot, G. W. The Paralation Model: Architecture Independent SIMD
Programming. MIT Press, Cambridge, MA (1988).

25. Stroustrup, Bjarne. The C++ Programming Language. Addison Wes-
ley, second edition (1990).

26. Wang, D. and Hsu, C. SLONN: A Simulation Language for modeling
of Neural Networks. Simulation (1990).

27. Weitzenfeld, A. Neural Simulation Language Version 2.1. Technical
Report 91-05, Center for Neural Engineering, University of Southern
California (August 1991).


